An Enhanced HMM-Based for Fuzzy Time Series Forecasting Model
نویسندگان
چکیده
The fast and accurate forecasting method can help makers to make appropriate strategy. Zadeh was given the definition of a fuzzy set in 1965. Song and Chissom proposed the definition and the forecasting framework of fuzzy time series in 1993. Sullivan and Woodall first proposed the forecasting method to handle one factor with probability Markov model in 1994. Li and Cheng proposed a stochastic hidden Markov model which considers two factors in 2010. However, an event can be affected by many factors. In this paper, we present a multi-factor HMM-based forecasting, and utilize more factors to get better forecasting accuracy rate.
منابع مشابه
A Multi-Factor HMM-based Forecasting Model for Fuzzy Time Series
In our daily life, people are often using forecasting techniques to predict weather, stock, economy and even some important Key Performance Indicator (KPI), and so forth. Therefore, forecasting methods have recently received increasing attention. In the last years, many researchers used fuzzy time series methods for forecasting because of their capability of dealing with vague data. The followe...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملA NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES
In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...
متن کاملResidual analysis using Fourier series transform in Fuzzy time series model
In this paper, we propose a new residual analysis method using Fourier series transform into fuzzy time series model for improving the forecasting performance. This hybrid model takes advantage of the high predictable power of fuzzy time series model and Fourier series transform to fit the estimated residuals into frequency spectra, select the low-frequency terms, filter out high-frequency term...
متن کاملInterpolating time series based on fuzzy cluster analysis problem
This study proposes the model for interpolating time series to use them to forecast effectively for future. This model is established based on the improved fuzzy clustering analysis problem, which is implemented by the Matlab procedure. The proposed model is illustrated by a data set and tested for many other datasets, especially for 3003 series in M3-Competition data. Comparing to the exist...
متن کامل